
Software-related Slack Chats with Disentangled Conversations

Preetha Chatterjee∗, Kostadin Damevski†, Nicholas A. Kraft‡, Lori Pollock∗
∗ University of Delaware, Newark, DE, USA; {preethac, pollock}@udel.edu

† Virginia Commonwealth University, Richmond, VA, USA; kdamevski@vcu.edu
‡ Uservoice, Raleigh, NC, USA; nkraft@gmail.com

ABSTRACT
More than ever, developers are participating in public chat com-
munities to ask and answer software development questions. With
over ten million daily active users, Slack is one of the most popular
chat platforms, hosting many active channels focused on software
development technologies, e.g., python, react. Prior studies have
shown that public Slack chat transcripts contain valuable informa-
tion, which could provide support for improving automatic soft-
ware maintenance tools or help researchers understand developer
struggles or concerns.

In this paper, we present a dataset of software-related Q&A
chat conversations, curated for two years from three open Slack
communities (python, clojure, elm). Our dataset consists of 38,955
conversations, 437,893 utterances, contributed by 12,171 users. We
also share the code for a customized machine-learning based algo-
rithm that automatically extracts (or disentangles) conversations
from the downloaded chat transcripts.

CCS CONCEPTS
• Software and its engineering → Maintaining software; •
Information systems→ Social networking sites;

KEYWORDS
online software developer chats, chat disentanglement

ACM Reference Format:
Preetha Chatterjee∗, Kostadin Damevski†, Nicholas A. Kraft‡, Lori Pollock∗.
2020. Software-related Slack Chats with Disentangled Conversations. In 17th
International Conference on Mining Software Repositories (MSR ’20), October
5–6, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3379597.3387493

1 INTRODUCTION
Increasingly, software developers are engaging in conversations
via online chat services such as Slack, IRC, Gitter, Microsoft Teams,
and Flowdock. Public, open-to-all Slack channels have been cre-
ated around specific software technologies allowing participants

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7517-7/20/05. . . $15.00
https://doi.org/10.1145/3379597.3387493

to ask and answer a variety of questions. Our preliminary stud-
ies show that such chat communications on Slack contain valu-
able information, such as descriptions of code snippets and spe-
cific APIs, good programming practices, and causes of common
errors/exceptions [9, 11]. Availability of these types of information
in software-related chats suggests that mining chats could provide
similar support for improving software maintenance tools as what
researchers have already leveraged from emails and bug reports [7],
tutorials [25], and Q&A forums [4, 10, 26, 28].

Different from many other sources of software development-
related communication, the information on chat forums is shared
in an unstructured, informal, and asynchronous manner. There is
no predefined delineation of conversation in chat communications;
each conversation could span from two messages to hundreds. Chat
conversations are also often interleaved, where multiple questions
are discussed and answered in parallel by different participants.
Therefore, a technique is required to separate, or disentangle, the
conversations for analysis by researchers or automatic mining tools.

In this paper, we describe a released dataset of software-related
developer chat conversations. A subset of this dataset was analyzed
as part of our research in understanding the content of developer
chat conversations on publicly available Slack channels [9]. We pub-
lish our dataset in XML format, where each XML node represents a
chat utterance, containing the anonymized name of the participant,
a timestamp, the message text, and an attribute (conversation id) to
associate the message with its corresponding conversation. The con-
versation id is created through a chat disentanglement technique,
which is a modified version of Elsner and Charniak’s well-known
algorithm that better matches the constraints of Slack and the type
of software-related Q&A conversations in our corpus [14].

The released conversations are from three programming com-
munities on Slack (python, clojure, elm), gathered over two years
(July 2017- June 2019). The overall dataset consists of 38,955 conver-
sations, 437,893 utterances, contributed by 12,171 users. To enable
others to process additional Slack transcripts and disentangle them
into conversations, we also share the code we used to process daily
chat logs, convert them to XML, and extract individual conver-
sations from the collected chat transcripts. Both code and data1
are openly available to be downloaded for further reuse by the
community.

2 BACKGROUND AND RELATEDWORK
Background: The most popular chat communities used by soft-
ware developers include Slack, IRC, Microsoft Teams, and Flowdock.
Slack, with over 10 million daily active users [33], is easily accessi-
ble to users as a mobile application (Windows, iOS, and Android) as

1https://zenodo.org/record/3627124

https://doi.org/10.1145/3379597.3387493
https://doi.org/10.1145/3379597.3387493
https://zenodo.org/record/3627124


MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Preetha Chatterjee∗ , Kostadin Damevski† , Nicholas A. Kraft‡ , Lori Pollock∗

     Slack Chat 
Online Service

Download Slack 
chat transcripts daily 

(JSON)

Collate and convert 
chat transcripts from 

JSON to XML

Anonymize user 
identities in chat 

transcripts

Disentangle chat 
conversations

Dataset of 
Software-related 
Slack Chats with 

Disentangled
Conversations

Preprocessing of data

Figure 1: Overview of Data Collection, Preprocessing and Storage of Slack Chats

well as a web-based and OS-based (Windows, Linux, andMac) appli-
cation. Public chats in Slack are comprised of multiple communities
focused on particular topics such as a technology (e.g., Python or
Ruby-on-Rails), with specific channels within a given community as-
signed to general discussion or to particular subtopics [34]. Within
each channel, users participate in chat conversations by posting
messages, emojis, and/or multimedia (image and video) messages.
Conversations in some channels follow a Q&A format, with infor-
mation seekers posting questions and others providing answers,
possibly including code snippets or stack traces. Slack provides
easy integration to frequently used developer tools (e.g., Github,
Bitbucket, JIRA, and Jenkins) through a set of conversation-based
bots and apps [37]. These bots and apps have been widely adopted
by many developers for different software engineering tasks such
as maintaining code quality, testing, conducting development oper-
ations, supporting customers, and creating documentation [18].
Chat Disentanglement Techniques: Most previous research on
conversation disentanglement has focused on developing data and
models based on chats extracted from IRC channels [14, 15]. Elsner
and Charniak’s dataset and disentanglement algorithm, extracted
from the #Linux IRC channel, has been used for training and evalu-
ation in subsequent disentanglement research [16, 22]. Riou et al.
[30] adapted Elsner and Charniak’s technique [15] to a French cor-
pus extracted from the Ubuntu platform, while Adams and Martell
[1] investigated methods of topic detection and topic thread ex-
traction. Lowe et al. [20, 21] used a heuristic-based approach to
extract conversations from the #Ubuntu channel. More recently,
Kummerfeld et al. [17] released a manually annotated IRC con-
versation disentanglement dataset with reply-to relations between
messages. To the best of our knowledge, our paper presents the first
large-scale dataset of automatically disentangled software related
conversations from the Slack platform.
Analysis of Chats: Researchers have studied chat communities
to learn about how they are used by development teams and the
usefulness of the conversations for understanding developer behav-
iors. Shihab et al. [32] analyzed developer Internet Relay Chat (IRC)
meeting logs to analyze the content, participants, their contribution
and styles of communications. Yu et al. [41] conducted an empirical
study to investigate the use of synchronous (IRC) and asynchronous
(mailing list) communication mechanisms in global software devel-
opment projects. Lin et al. [19] conducted an exploratory study to
learn how Slack impacts development team dynamics. Stray et al.
[35] investigated how distributed global development teams use
Slack. Panichella et al. [24] investigate collaboration links iden-
tified through data from three different kinds of communication
channels: mailing lists, issue trackers, and IRC chat logs. Lebeuf
et al. [18] investigated how chatbots can help reduce the friction

points that software developers face when working collaboratively.
Paikari et al. [23] characterized and compared chatbots related
to software development in six dimensions (type, direction, guid-
ance, predictability, interaction style, and communication channel).
Alkadhi et al. [2, 3] conducted exploratory studies to examine the
frequency and completeness of available rationale in chat messages,
and the potential of automatic techniques for rationale extraction.
In one of our earlier works, we assessed Slack public Q&A chat as
a mining source for improving software tools [8, 9].

3 METHODOLOGY
Figure 1 presents an overview of our process for automatic data
collection, preprocessing, disentanglement and storage of Slack de-
veloper chats. First, we download daily chat transcripts from each
Slack channel in JSON format. Second, we collate the daily chat
transcripts and convert them into XML format. Next, we anonymize
the user identities of the chat participants to preserve privacy, as,
otherwise, the Slack user ids can be used to retrieve the participant’s
e-mail via the channel of origin. Finally, we run a disentanglement
algorithm to produce XML attributes that associate identified utter-
ances (i.e., messages) with their corresponding conversations.

3.1 Data Selection
For the purpose of creating a dataset reusable for software devel-
opers and maintenance tools, we identified groups that primarily
discuss software development topics and have a substantial collec-
tion of participants. We selected three programming communities
who have active presence on Slack, and were willing to provide us
API tokens for download.Within those selected communities, we fo-
cused on four channels that follow a Q&A format: pythondev#help,
clojurians#clojure, elmlang#beginners, and elmlang#general. The
channels are advertised on theWeb and allow anyone to join, with a
joining process only requiring the participant to create a username
(any unique string) and a password. Once joined, on these channels,
participants can ask or answer any question, as long as it pertains
to the main topic (e.g., programming in Python).

3.2 Data Collection and Preprocessing
Because programmatic access to the data in Slack communities is
controlled by the administrators of the Slack team, we contacted
several public Slack teams and asked for an API token that would
allow us to read and store their data. Public Slack teams typically
use Slack’s free tier, which only stores the most recent 10,000 mes-
sages. Thus, for each Slack community, we downloaded all of the
discussion data from each channel incrementally, every day for two
years (July 2017- Jun 2019).



Software-related Slack Chats with Disentangled Conversations MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

 <message conversation_id = T3610>
    <ts>2018-06-11T11:56:24.000781</ts>
    <user>Harrison</user>
    <text>Hi guys. How can we delete all line breaks from .docx file? 
    I'm using python-docx library. In docx - I store some Jinja2 template, 
    which later I'm rendering with some data.</text>
  </message>
  <message conversation_id = T3611>
    <ts>2018-06-11T12:24:04.000597</ts>
    <user>Minna</user>
    <text>Not sure if I should ask here or job_board, I wanted to expand 
    my github and use it as a portfolio of sorts, are there certain types 
    of projects that are good to have in there to show my comptency?</text>
  </message>
?
  <message conversation_id = T3611>
    <ts>2018-06-11T12:58:11.000201</ts>
    <user>Raul</user>
    <text><Minna; no one has real time to browse through your repo i would 
    think. So if you want a position that uses django/react then do a project 
    that does so. If you're trying to get into scraping, do a scraping project 
    etc</text>
  </message>
  <message conversation_id = T3610>
    <ts>2018-06-11T12:58:58.000549</ts>
    <user>Raul</user>
    <text>Harrison: yes just open the file and remove all the line breaks. 
    They are essentially the special character `"\n"`</text>
  </message>

Figure 2: Data Format

The downloaded chats from Slack were in JSON format. We
collated all the downloaded chat transcripts and converted them to
XML format, in which each message contains a timestamp, the id of
the participant, and the message text. During the JSON to XML file
conversion, we only use Slack events that correspond to messages,
ignoring all other recorded events (e.g., channel joins). In the next
step, we obfuscated the participant’s ids for privacy, by replacing
the original usernames with randomly generated human names.

3.3 Conversation Disentanglement
Since messages in chats form a stream, with conversations often
interleaving such that a single conversation thread is entangled
with other conversations, a technique is required to separate, or
disentangle, the conversations for analysis. Figure 2 shows an exam-
ple of an interwoven conversation in pythondev#help channel on
Slack. In this example, a question follows another question, while
the answers do not follow a chronological order; the third and the
fourth utterances are answers to the second and first questions,
respectively. This free form nature of chat communications makes
the task of tracing and understanding chat transcripts difficult for
automated tools.

The chat disentanglement problem has been studied before in
the context of IRC and similar chat platforms [38]. We leveraged
the effective technique proposed by Elsner and Charniak [14] that
learns a supervised model based on a set of features between pairs
of chat messages that occur within a window of time of each other.
The features include the elapsed time between the message pair,
whether the speaker in the two messages is the same, occurrence
of similar words, use of cue words (e.g., hello, hi, yes, no), the use of
technical jargon, among others. For the training set, we manually
disentangled a set of 500 messages from each Slack channel and
trained the model using the combined set.

Table 1: Dataset of Disentangled Slack Conversations
Community #Conver. #Utterances #Partic.

pythondev#help 8,887 106,262 3,295
clojurians#clojure 7,918 72,973 2,422
elmlang#beginners 13,169 168,689 3,695
elmlang#general 8,981 899,69 2,759
Total 38,955 437,893 12,171

After we observed that some Slack channels can become dormant
for a few hours at a time and that participants can respond to each
other with considerable delay, we modified Elsner and Charniak’s
algorithm to expand the window of message pairs. Our modifica-
tion computes features between the current utterance and every
utterance that 1) occurred <= 1477 (1.518) seconds prior to it, or
2) is within the last 5 utterances observed in the channel. We also
added to the set of features used by Elsner and Charniak, introduc-
ing several specific to Slack, for instance, the use of URLs, Slack
channel references, or code blocks within a message. Leveraging
the fact that our conversations are mostly Q&A, we added features
corresponding to gratitude (e.g., thanks, this works, makes sense),
which sometimes occurs at the end of a conversation, when the
question is answered satisfactorily. We also followed the procedure
prescribed by Elsner and Charniak to create a better set of technical
words for the model by extracting all of the words occurring in
Stack Overflow documents tagged with a particular tag that do
not co-occur in the English Wikibooks corpus. To measure the
accuracy of the disentangling process, we manually disentangled
separate sets of messages from each of the channels. The model
with our enhancements produced a micro-averaged F-measure of
0.80; a strong improvement over the vanilla Elsner and Charniak
approach’s micro-averaged F-measure of 0.66. Since during the
process of creating the gold set of disentangled chat conversations
annotators can disagree whether a new conversation branches off
from the original or not, micro-averaged F-measure is considered
more appropriate than the standard F-measure [14]. With the per-
mision of the original authors, we provide our modified Elsner and
Charniak disentanglement code along with the Slack dataset.

3.4 Data Format
We publish our dataset in an XML format as shown in Figure 2,
produced as an output of conversation disentanglement. In the
disentangled files, each message has <message conversation_id>
which is a markup to associate each message with its correspond-
ing conversation id, timestamp <ts> in Epoch format, anonymized
participant names <user>, and the content <text> of the message.

4 DATA METRICS
In Table 1, we show the breakdown of number of conversations,
utterances, and participants for each of the 4 channels in our dataset.
We also computed and report a few additional measures on our
dataset that describe its basic characteristics: conversation length,
code snippets, and urls. The results are displayed as boxplots in
Figure 3.

Conversation length is defined as the number of sentences in a
conversation. We computed this measure on the natural language
text in each document using the sentence tokenizer from NLTK [6].
Code snippet count is computed as the number of code snippets



MSR ’20, October 5–6, 2020, Seoul, Republic of Korea Preetha Chatterjee∗ , Kostadin Damevski† , Nicholas A. Kraft‡ , Lori Pollock∗

(a) Conversation length (b) Code Snippet count (c) Code Snippet length

Figure 3: Box Plots of Measures by Community

per conversation, counting both inline and multiline code snip-
pets in a conversation. In Slack, inline code snippets are enclosed
in single quotes, whereas multiline code snippets are enclosed in
triple quotes. Code snippet length is the number of non-whitespace
characters in each code snippet.

As shown in Figure 3a, the median conversation lengths for
each of the communities are similar, ranging from 5-7 sentences.
Figure 3b indicates that elmlang#beginners can have larger number
of code snippets than the other communities. The median code
snippet count in elmlang#beginners is 2, whereas the median code
snippet count in elmlang#general and clojurians#clojure is 1. The
median code snippet count for pythondev#help is zero, probably
because sufficient resources about coding in python are already
available online. From Figure 3c, we observe that both the median
and the variation of code snippet length for elmlang#beginners are
larger than the rest of the communities. Intuitively, this is because
elmlang#beginners is for novice programmers who frequently ask
and answer more programming-related questions, such as errors
and exceptions related to specific code snippets.

5 LIMITATIONS AND EXTENSIONS
Our dataset originates from public Slack channels, focusing on con-
versations that start with a question followed by a discussion with
answers. Thus, the content of our dataset, to some extent, resembles
Q&A based forums such as Stack Overflow. If others are interested
in datasets that represent team dynamics inside an organization,
they would need to augment with private conversations.

We selected the chat transcripts from Slack, which is one of
the most popular software developer chat communities. We chose
three active programming language communities (4 Slack channels)
for our dataset. There is a broad set of topics related to a partic-
ular programming language in each channel; however, if others
want broader topics represented in their datasets, they will need to
broaden the set.

We modified Elsner and Charniak’s disentanglement algorithm
to account for several features specific to Slack. The code of our
modified disentanglement algorithm may need to be adapated to
work well on other chat platforms or developer communications.
Any changes in disentangled conversations could be handled man-
ually by post processing or by further automation adaptation.

6 RESEARCH OPPORTUNITIES
In our previous study [9], we found that Q&A chats in Slack pro-
vide the same information as can be found in Q&A posts on Stack

Overflow. Over the years, researchers have mined the knowledge
embedded in Q&A forums, such as Stack Overflow, for supporting
IDE recommendation [4, 26, 28], learning and recommendation of
APIs [12, 27, 39], automatic generation of comments for source
code [29, 40], and in building thesauri and knowledge graphs of
software-specific terms and commonly-used terms in software engi-
neering [13, 36]. Presence of similar information in Slack Q&A chats
suggests that it can serve as a resource for several mining-based
software engineering tools.

Developers use Slack to share opinions on best practices, APIs,
or tools (e.g., API X has better design or usability than API Y ).
Q&A forums such as Stack Overflow explicitly forbid posting of
questions that ask for opinions or recommendations. However, it
is clear that receiving opinions is valuable to software developers.
The availability of opinions or recommendations in chats may lead
to new mining opportunities for software tools.

We noticed that, along with few links to Stack Overflow and
GitHub Gists, there were sporadic links to other sites in our dataset.
We believe that embedded links on Slack are used in many different
contexts, and as such can be mined to provide more context to other
data sources (tutorials, Q&A forums), and thus improve or augment
developer learning resources.

Due to its increased popularity, Slack is becoming a popular me-
dia to disseminate information between software engineers across
the globe. Lin et al. [19] have shown that developers use Slack to
discover news/information on technological trends. Our dataset
could be studied to identify ‘hot’ topics of discussion in a program-
ming community [31], and understand common challenges and
misconceptions among developers [5]. The results of these studies
would provide guidance to future research in developing software
support and maintenance tools.

The widespread use of chat communication platforms such as
Slack provides a thriving opportunity to build new conversation-
based tools and integrations, such as chatbots. Bots have become
increasingly prominent due to the ease of their integration with
communication tools and accessibility to various APIs and data
sources [18]. Sharing chat datasets such as ours could potentially
facilitate further research on training and designing chatbots for
software development activities [23].

ACKNOWLEDGMENTS
We acknowledge the support of the National Science Foundation
under grants 1812968 and 1813253.



Software-related Slack Chats with Disentangled Conversations MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

REFERENCES
[1] P. H. Adams and C. H. Martell. 2008. Topic Detection and Extraction in Chat.

In 2008 IEEE International Conference on Semantic Computing. 581–588. https:
//doi.org/10.1109/ICSC.2008.61

[2] R. Alkadhi, T. Lata, E. Guzmany, and B. Bruegge. 2017. Rationale in Development
Chat Messages: An Exploratory Study. In 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR). 436–446. https://doi.org/10.
1109/MSR.2017.43

[3] R. Alkadhi, M. Nonnenmacher, E. Guzman, and B. Bruegge. 2018. How do
developers discuss rationale?. In 2018 IEEE 25th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER), Vol. 00. 357–369. https:
//doi.org/10.1109/SANER.2018.8330223

[4] Alberto Bacchelli, Luca Ponzanelli, and Michele Lanza. 2012. Harnessing Stack
Overflow for the IDE. In Proc. 3rd Int’l Wksp. on Recommendation Systems for
Software Engineering. 26–30.

[5] Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. 2014. Mining Questions
Asked by Web Developers. In Proceedings of the 11th Working Conference on
Mining Software Repositories (MSR 2014). Association for Computing Machinery,
New York, NY, USA, 112?121. https://doi.org/10.1145/2597073.2597083

[6] Steven Bird. 2002. Nltk: The natural language toolkit. In In Proceedings of the ACL
Workshop on Effective Tools and Methodologies for Teaching Natural Language Pro-
cessing and Computational Linguistics. Philadelphia: Association for Computational
Linguistics.

[7] Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano
Panichella. 2012. Who is Going to Mentor Newcomers in Open Source Projects?.
In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foun-
dations of Software Engineering (FSE ’12). ACM, New York, NY, USA, Article 44,
11 pages. https://doi.org/10.1145/2393596.2393647

[8] Preetha Chatterjee. 2020. Extracting Archival-Quality Information from Software-
Related Chats. In Proceedings of the 42nd International Conference on Software
Engineering.

[9] P. Chatterjee, K. Damevski, L. Pollock, V. Augustine, and N.A. Kraft. 2019. Ex-
ploratory Study of Slack Q&A Chats as a Mining Source for Software Engineering
Tools. In Proceedings of the 16th International Conference onMining Software Repos-
itories (MSR’19). https://doi.org/10.1109/MSR.2019.00075

[10] Preetha Chatterjee, Minji Kong, and Lori Pollock. 2020. Finding Help with
Programming Errors: An Exploratory Study of Novice Software Engineers’ Focus
in Stack Overflow Posts. Journal of Systems and Software 159 (2020), 110454.
https://doi.org/10.1016/j.jss.2019.110454

[11] P. Chatterjee, M. A. Nishi, K. Damevski, V. Augustine, L. Pollock, and N. A.
Kraft. 2017. What information about code snippets is available in different
software-related documents? An exploratory study. In 2017 IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering (SANER). 382–386.
https://doi.org/10.1109/SANER.2017.7884638

[12] C. Chen, S. Gao, and Z. Xing. 2016. Mining Analogical Libraries in Q&A Discus-
sions — Incorporating Relational and Categorical Knowledge into Word Embed-
ding. In Proc. IEEE 23rd Int’l Conf. on Software Analysis, Evolution, and Reengi-
neering. 338–348. https://doi.org/10.1109/SANER.2016.21

[13] Chunyang Chen, Zhenchang Xing, and Ximing Wang. 2017. Unsupervised
Software-specific Morphological Forms Inference from Informal Discussions. In
Proc. 39th Int’l Conf. on Software Engineering. 450–461. https://doi.org/10.1109/
ICSE.2017.48

[14] Micha Elsner and Eugene Charniak. 2008. You talking to me? A Corpus and Algo-
rithm for Conversation Disentanglement. In Proc. Association of Computational
Linguistics: Human Language Technology. 834–842.

[15] M. Elsner and E. Charniak. 2010. Disentangling chat. Computational Linguistics
36, 3 (2010), 389–409.

[16] Jyun-Yu Jiang, Francine Chen, Yan-Ying Chen, and Wei Wang. 2018. Learning
to Disentangle Interleaved Conversational Threads with a Siamese Hierarchical
Network and Similarity Ranking. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers). Association for Computational
Linguistics, NewOrleans, Louisiana, 1812–1822. https://doi.org/10.18653/v1/N18-
1164

[17] Jonathan K. Kummerfeld, Sai R. Gouravajhala, Joseph J. Peper, Vignesh Athreya,
Chulaka Gunasekara, Jatin Ganhotra, Siva Sankalp Patel, Lazaros C Polymenakos,
and Walter Lasecki. 2019. A Large-Scale Corpus for Conversation Disentangle-
ment. In Proceedings of the 57th Annual Meeting of the Association for Compu-
tational Linguistics. Association for Computational Linguistics, Florence, Italy,
3846–3856. https://doi.org/10.18653/v1/P19-1374

[18] Carlene Lebeuf, Margaret-Anne Storey, and Alexey Zagalsky. 2017. How Software
Developers Mitigate Collaboration Friction with Chatbots. In Proc. 20th ACM
Conf. on Computer-Supported Cooperative Work and Social Computing.

[19] Bin Lin, Alexey Zagalsky, Margaret-Anne Storey, and Alexander Serebrenik. 2016.
Why Developers Are Slacking Off: Understanding How Software Teams Use
Slack. In Proc. 19th ACM Conf. on Computer Supported Cooperative Work and
Social Computing Companion. https://doi.org/10.1145/2818052.2869117

[20] Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle Pineau. 2015. The Ubuntu
Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn
Dialogue Systems. In Proceedings of the 16th Annual Meeting of the Special Interest
Group on Discourse and Dialogue. Association for Computational Linguistics,
Prague, Czech Republic, 285–294. https://doi.org/10.18653/v1/W15-4640

[21] Ryan Thomas Lowe, Nissan Pow, Iulian Serban, Laurent Charlin, Chia-Wei Liu,
and Joelle Pineau. 2017. Training End-to-End Dialogue Systems with the Ubuntu
Dialogue Corpus. D&D 8 (2017), 31–65.

[22] Shikib Mehri and Giuseppe Carenini. 2017. Chat Disentanglement: Identifying Se-
mantic Reply Relationships with Random Forests and Recurrent Neural Networks.
In Proceedings of the Eighth International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Asian Federation of Natural Language Pro-
cessing, Taipei, Taiwan, 615–623. https://www.aclweb.org/anthology/I17-1062

[23] Elahe Paikari and André van der Hoek. 2018. A Framework for Understanding
Chatbots and Their Future. In Proceedings of the 11th International Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE ’18). ACM, New
York, NY, USA, 13–16. https://doi.org/10.1145/3195836.3195859

[24] S. Panichella, G. Bavota, M. D. Penta, G. Canfora, and G. Antoniol. 2014. How
Developers’ Collaborations Identified from Different Sources Tell Us about Code
Changes. In 2014 IEEE International Conference on Software Maintenance and
Evolution. 251–260. https://doi.org/10.1109/ICSME.2014.47

[25] Gayane Petrosyan, Martin P. Robillard, and Renato De Mori. 2015. Discovering
Information Explaining API Types Using Text Classification. In Proceedings of
the 37th International Conference on Software Engineering - Volume 1 (ICSE ’15).
IEEE Press, Piscataway, NJ, USA, 869–879. http://dl.acm.org/citation.cfm?id=
2818754.2818859

[26] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Michele Lanza. 2014. Mining StackOverflow to Turn the IDE into a Self-confident
Programming Prompter. In Proc. 11th Working Conf. on Mining Software Reposito-
ries. 102–111. https://doi.org/10.1145/2597073.2597077

[27] M.M. Rahman, C.K. Roy, and D. Lo. 2016. RACK: Automatic API Recommendation
Using Crowdsourced Knowledge. In Proc. IEEE 23rd Int’l Conf. on Software Analy-
sis, Evolution, and Reengineering. 349–359. https://doi.org/10.1109/SANER.2016.80

[28] M.M. Rahman, S. Yeasmin, and C.K. Roy. 2014. Towards a context-aware IDE-
based meta search engine for recommendation about programming errors and
exceptions. In Proc. IEEE Conf. on Software Maintenance, Reengineering, and Re-
verse Engineering. 194–203. https://doi.org/10.1109/CSMR-WCRE.2014.6747170

[29] M. M. Rahman, C. K. Roy, and I. Keivanloo. 2015. Recommending Insightful
Comments for Source Code using Crowdsourced Knowledge. In Proc. IEEE 15th
Int’l Working Conf. on Source Code Analysis and Manipulation. 81–90. https:
//doi.org/10.1109/SCAM.2015.7335404

[30] Matthieu Riou, Soufian Salim, and Nicolás Borrego Hernández. 2015. Using
discursive information to disentangle French language chat.

[31] A. Sharma, Y. Tian, and D. Lo. 2015. What’s hot in software engineering Twit-
ter space?. In 2015 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 541–545. https://doi.org/10.1109/ICSM.2015.7332510

[32] E. Shihab, Z. M. Jiang, and A. E. Hassan. 2009. Studying the Use of Developer
IRC Meetings in Open Source Projects. In 2009 IEEE International Conference on
Software Maintenance. 147–156. https://doi.org/10.1109/ICSM.2009.5306333

[33] The Statistics Portal Statista. 2019. https://www.statista.com/statistics/652779/
worldwide-slack-users-total-vs-paid/.

[34] Margaret-Anne Storey, Alexey Zagalsky, Fernando Figueira Filho, Leif Singer, and
Daniel M. German. 2017. How Social and Communication Channels Shape and
Challenge a Participatory Culture in Software Development. IEEE Transactions
on Software Engineering 43, 2 (2017). https://doi.org/10.1109/TSE.2016.2584053

[35] Viktoria Stray, Nils Brede Moe, and Mehdi Noroozi. 2019. Slack Me if You Can!:
Using Enterprise Social Networking Tools in Virtual Agile Teams. In Proceedings of
the 14th International Conference on Global Software Engineering (ICGSE ’19). IEEE
Press, Piscataway, NJ, USA, 101–111. https://doi.org/10.1109/ICGSE.2019.00031

[36] Y. Tian, D. Lo, and J. Lawall. 2014. Automated construction of a software-
specific word similarity database. In Proc. IEEE Conf. on Software Maintenance,
Reengineering, and Reverse Engineering. 44–53. https://doi.org/10.1109/CSMR-
WCRE.2014.6747213

[37] Slack Development Tools. 2018. https://slack.com/apps/category/At0EFRCDNY-
developer-tools.

[38] David C Uthus and DavidWAha. 2013. Multiparticipant Chat Analysis: A Survey.
Artificial Intelligence 199 (2013), 106–121.

[39] W. Wang and M.W. Godfrey. 2013. Detecting API usage obstacles: A study of iOS
and Android developer questions. In Proc. 10th Working Conf. on Mining Software
Repositories. 61–64. https://doi.org/10.1109/MSR.2013.6624006

[40] Edmund Wong, Jinqiu Yang, and Lin Tan. 2013. AutoComment: Mining Question
and Answer Sites for Automatic Comment Generation. In Proc. 28th IEEE/ACM
Int’l Conf. on Automated Software Engineering. 562–567. https://doi.org/10.1109/
ASE.2013.6693113

[41] Liguo Yu, Srini Ramaswamy, Alok Mishra, and Deepti Mishra. 2011. Commu-
nications in Global Software Development: An Empirical Study Using GTK+ OSS
Repository. Springer Berlin Heidelberg, Berlin, Heidelberg, 218–227. https:
//doi.org/10.1007/978-3-642-25126-9_32

https://doi.org/10.1109/ICSC.2008.61
https://doi.org/10.1109/ICSC.2008.61
https://doi.org/10.1109/MSR.2017.43
https://doi.org/10.1109/MSR.2017.43
https://doi.org/10.1109/SANER.2018.8330223
https://doi.org/10.1109/SANER.2018.8330223
https://doi.org/10.1145/2597073.2597083
https://doi.org/10.1145/2393596.2393647
https://doi.org/10.1109/MSR.2019.00075
https://doi.org/10.1016/j.jss.2019.110454
https://doi.org/10.1109/SANER.2017.7884638
https://doi.org/10.1109/SANER.2016.21
https://doi.org/10.1109/ICSE.2017.48
https://doi.org/10.1109/ICSE.2017.48
https://doi.org/10.18653/v1/N18-1164
https://doi.org/10.18653/v1/N18-1164
https://doi.org/10.18653/v1/P19-1374
https://doi.org/10.1145/2818052.2869117
https://doi.org/10.18653/v1/W15-4640
https://www.aclweb.org/anthology/I17-1062
https://doi.org/10.1145/3195836.3195859
https://doi.org/10.1109/ICSME.2014.47
http://dl.acm.org/citation.cfm?id=2818754.2818859
http://dl.acm.org/citation.cfm?id=2818754.2818859
https://doi.org/10.1145/2597073.2597077
https://doi.org/10.1109/SANER.2016.80
https://doi.org/10.1109/CSMR-WCRE.2014.6747170
https://doi.org/10.1109/SCAM.2015.7335404
https://doi.org/10.1109/SCAM.2015.7335404
https://doi.org/10.1109/ICSM.2015.7332510
https://doi.org/10.1109/ICSM.2009.5306333
https://www.statista.com/statistics/652779/worldwide-slack-users-total-vs-paid/
https://www.statista.com/statistics/652779/worldwide-slack-users-total-vs-paid/
https://doi.org/10.1109/TSE.2016.2584053
https://doi.org/10.1109/ICGSE.2019.00031
https://doi.org/10.1109/CSMR-WCRE.2014.6747213
https://doi.org/10.1109/CSMR-WCRE.2014.6747213
https://slack.com/apps/category/At0EFRCDNY-developer-tools
https://slack.com/apps/category/At0EFRCDNY-developer-tools
https://doi.org/10.1109/MSR.2013.6624006
https://doi.org/10.1109/ASE.2013.6693113
https://doi.org/10.1109/ASE.2013.6693113
https://doi.org/10.1007/978-3-642-25126-9_32
https://doi.org/10.1007/978-3-642-25126-9_32

